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Abstract

Advanced automobile technology, developed infrastructure, and changing economic markets have 

resulted in increasing commute times. Traffic is a major source of harmful pollutants and 

consequently daily peak exposures tend to occur near roadways or while traveling on them. The 

objective of this study was to measure simultaneous real-time particulate matter (particle numbers, 

lung-deposited surface area, PM2.5, particle number size distributions) and CO concentrations 

outside and in-cabin of an on-road car during regular commutes to and from work. Data was 

collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst 

traveling along different road-types with varying traffic densities. Multiple predictor variables 

were examined using linear mixed-effects models. Ambient pollutants (NOx, PM2.5, CO) and 

meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5–44% 

of outdoor pollutant variability, while the time spent travelling behind a bus was statistically 

significant for PM2.5, lung-deposited SA, and CO (adj-R2 values = 0.12, 0.10, 0.13). The 

geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were 

observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows 

were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the 

pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of 

pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the 

window/ventilation parameters. As expected, particle number concentrations were impacted the 

most by changes to window position / ventilation, and PM2.5 the least. Car drivers can expect their 

highest exposures when driving with windows open or the fan on, and their lowest exposures 

during windows closed or the AC on. Final linear mixed-effects models could explain between 88–

97% of cabin pollutant concentration variability. An individual may control their commuting 

exposure by applying dynamic behavior modification to adapt to changing pollutant scenarios.

*To whom correspondence should be addressed: pbiswas@wustl.edu. 

Supporting Information
This document provides information on the predictor variables used in regression analysis (Table S1), the basic descriptive statistics 
for measured outdoor and cabin pollutant concentrations (Table S2 and S3), the results for Pearson’s product-moment correlation (r) 
(Table S4) and Spearman’s Rank correlation (rs) (for non-parametric data) (Table S5). It also presents photos of the experimental setup 
(Figure S1), and discusses the issue of self-pollution (Section 4.)
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1. Introduction

Ambient air pollution is a complex mixture of primary and secondary organic and inorganic 

particulates and gases generated from both anthropogenic (combustion and non-combustion) 

and natural sources. Recent estimates have put the global annual mortality rate from ambient 

particulate matter (PM) pollution at more than 3 million, especially from cardiovascular and 

circulatory diseases, lower respiratory infections, chronic obstructive pulmonary disorder 

(COPD), and lung cancer, making it the 9th most important risk factor to human health 

globally, and the number one environmental risk factor (Lim et al., 2012). The positive 

association with lung cancer lead, in 2013, to the International Agency for Research on 

Cancer (IARC) Working Group to unanimously classify outdoor air pollution as 

carcinogenic to humans (Group 1); PM was evaluated separately and also classified as 

Group 1 (Loomis et al., 2013). In developed countries, transport contributes 25–40% to 

ambient pollutant concentrations collectively, although for some pollutants such as carbon 

monoxide (CO), nitrogen oxides (NOx), and ultrafine particles (UFP), traffic may contribute 

up to 90% (Keuken et al., 2005; Greenbaum, 2013). In fact, diesel and gasoline exhaust have 

both been classed by the IARC as Group 1 and Group 2B carcinogens, respectively(Russell, 

2013). Because traffic emissions are a major source of pollutants, peak concentrations tend 

to occur near or on roads, which is where an individual may receive a disproportionately 

large fraction of their total daily personal exposures. Indeed studies have reported elevated 

risks for developing asthma and reduced lung function in children living near to heavily-

trafficked roads (Brugge et al., 2007), as well as measured changes in cardiac biomarkers 

and pulmonary function in adults driving or working in private vehicles (cars) (Riediker et 
al., 2004; Heinrich et al., 2005; Sarnat et al., 2014).

Cars continue to dominate the commuting landscape in the US. According to the 2009 

National Household Travel Survey (NHTS) conducted by the US Department of Transport 

(USDOT) (Usdot, 2009), 91% of US commuters travel an average of 24.4 miles (46 

minutes) to and from work by private vehicle; the vast majority (~80%), commute alone 

(Mckenzie, 2015). Indeed, private vehicle ownership has continued to rise since surveys 

began in 1969, so that by 2009 the number of personal vehicles far exceeded the number of 

drivers. In addition, the average age of the US vehicle fleet has also increased so that 40% of 

all private cars are now 10 years of age or older (Usdot, 2009). This has potential 

environmental and health consequences given that older vehicles tend to generate higher 

emissions, due to age-related deterioration of vehicle control systems (Borken-Kleefeld e 

Chen, 2015), impurity-enriched lubricating oil in the crankcase (Russell, 2013), abrasion and 

wear and tear of metallic components (Greenbaum, 2013), and generally more permissive 

emission standards (Krasenbrink et al., 2005). The persistent lack of investment and public 

support continues to hamper the development of transport alternatives, thus vehicle 

ownership and traffic flows are only expected to increase.
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Many laboratory and field studies have examined pollutant concentrations and commuter 

exposures during car travel (Kaur et al., 2007; Zuurbier et al., 2010; De Nazelle et al., 2012; 

Kingham et al., 2013; Ragettli et al., 2013; Suarez et al., 2014; Good et al., 2016). Factors 

such as vehicle age, fuel type, driving patterns (acceleration / idling), vehicle speed, 

proximity to other cars, road-type, position on the road, self-pollution, traffic mix, 

meteorology, topography, and road condition, have all been reported to influence the local 

pollutant environment outside of a vehicle (Van Wijnen et al., 1995; Knibbs et al., 2010; 

Knibbs et al., 2011; Kingham et al., 2013). And although studies investigating car 

commuting exposures have highlighted elevated cabin pollutant concentrations whilst 

traveling through tunnels and on freeways (Kaminsky et al., 2009; Knibbs et al., 2010), with 

both increasing and decreasing vehicle speeds (Hudda et al., 2012; Ding et al., 2016), and 

higher road and traffic densities (Weichenthal et al., 2015), the air exchange rate (AER) 

(dependent on ventilation parameters such as window position, the ventilation system (fan/

AC), natural leakage from door seals and window cracks) is highlighted as among the most 

important determinants of cabin concentrations, or cabin particle removal (Hudda et al., 
2011; Knibbs et al., 2011). Kaminsky et al., (2009) observed the highest UFP concentrations 

with AC followed by windows open then windows closed, while Hudda et al., (2012) and 

Ding et al., (2016) reported lower indoor / outdoor ratios when the fan was operating under 

re-circulation (compared to non-recirculation) mode. The duration of the commute has also 

been highlighted when cumulative exposures were considered (Good et al., 2016), 

something that is often neglected when averages are the main metric with which results are 

described.

Only a few studies have previously obtained simultaneous in-cabin / outdoor measurements. 

Hudda and Fruin (2013) collected multiple particle metrics (UFP, PM2.5, PM10, black 

carbon (BC), particle-bound PAHs) during 3 ventilation modes: fan off, fan on (recirculation 

mode), fan on (outside air). They also conducted earlier studies measuring particle number 

size distributions (PNSD) and total particle number concentrations (Hudda et al., 2011; 

Hudda et al., 2012). Zhu et al., (2007) also measured in-cabin / outdoor PNSD and particle 

number concentrations in 3 vehicles for the same ventilation modes as the previous study. 

Bigazzi and Figliozzi (2012) measured UFP in 3 vehicles for a range of ventilation 

scenarios, however simultaneous in-cabin / outdoor measurements were only collected 

during the latter part of the study. Finally, Weichenthal et al., (2015) measured simultaneous 

in-cabin / outdoor UFP, BC, CO, and PM2.5 concentrations in 3 cities in Canada in one 

vehicle type; however, the different ventilation scenarios were not investigated.

Existing studies provide invaluable insights into the factors controlling cabin concentrations. 

However, one of the main objectives and largest contributions of this work was to collect / 

present simultaneously collected in-cabin and outdoor data for multiple pollutant metrics 

during realistic car commutes. To the authors’ knowledge, no other study has incorporated 

real home-to-work-to-home commutes, thus capturing a real-world, non-contrived 

commuting experience, as well as related complexities. The next objective was to examine 

the parameters effecting both outdoor concentrations and outdoor and cabin associations. 

This study is also unique in conducting regression analysis on potential variables influencing 

the air directly outside of a vehicle, before then trying to ascertain how these variables 

influence the air inside of the vehicle. Four commonly used ventilation parameters were 
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investigated: windows open, windows closed, fan on, AC on, and rigorous analysis was 

performed using linear regression and mixed-effects models. No other study has previously 

measured these 4 ventilation scenarios using multiple pollutant metrics, and results will 

show how they impact pollutants differently. This is also the first commuting study to 

incorporate lung-deposited surface area (SA) measurements, despite being increasingly cited 

as the particle metric which correlates the most strongly with inflammatory responses 

(Oberdorster, 1996; Brown et al., 2001; Karakoçak et al., 2016). It is also the first study of 

its kind in the Midwest, in spite of the overwhelming reliance of the private motor vehicle in 

this region. The overall aim of this study was to identify when and during which ventilation 

scenarios commuters may receive their highest exposures, and how this may be mitigated 

through behavior modification.

2. Methods

2.1 Site / location

Measurements were collected along 2 routes from Washington University in St Louis’ south-

east parking lot (work destination) to 2 residential locations: one in Shaw (63110), an inner-

city residential neighborhood with a grid layout approximately 6 miles south-east of the 

university, and one in Hazelwood (63042), a residential / industrial suburban location, 

around 18 miles north-west of the university and 4 miles north of Lambert International 

airport (Figure 1). These routes comprise both freeways and non-freeway roads with varying 

aspect (width-to-height) ratios and surroundings. They also pass several industries including 

an aircraft manufacturing facility, a mail shipping center, a pharmaceutical and chemical 

business, a coffee roasting factory, and various stores, restaurants, and fast-food eateries. 

Traffic densities differed depending on the road-types being traversed and the time of day.

2.2 Experimental plan

Real-time simultaneous particulate matter and CO measurements were collected outside and 

inside of an on-road car operating under different ventilation scenarios: windows open, 

windows closed, fan on (midway, no recirculation), AC on (midway, no recirculation). When 

either the fan or AC were operating, the windows were closed. Two vehicles with gasoline-

fueled internal combustion engines and cabin filters were used in this study: a Hyundai 

Sonata 2013 (Car 1), and a Subaru Outback 2010 (Car 2). Car 1 had driven 18,500 miles 

since the cabin filter had been changed, and the Hyundai, 15,000 miles. Each vehicle was 

fitted with five pairs of instruments. The first set of instruments sampled outdoor air: the 

inlet was located 3 cm outside of the back left passenger window. A 2 cm strip of foam was 

fitted into a crack in the window with feed-through for the tubing and a CO sensor. A second 

set of identical instruments sampled cabin air: this inlet was located in what would be 

considered the breathing zone of a front seat passenger. A schematic of the experimental 

setup is presented in Figure 2, while photographs of the cars and experimental setup are 

provided in the Supporting Information (Figures S1). Minimal amounts of conductive 

silicone tubing were used for all aerosol instruments to minimize particle losses, and all 

tubing lengths were replicated for each set of instruments so that results would be 

comparable. No tubing was necessary for the CO sensors. The instrument setup was 

identical within each vehicle.
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Data from a total of 56 commutes were collected across 25 non-consecutive days from 

September – November, 2014, between 8–10am, and 4–7 pm - capturing at least some of the 

morning and evening rush hours. Due to instrument and personnel limitations, sometimes 

more than 2 commutes were performed in one day. Each ventilation scenario was measured 

a minimum of 12 times. A dashboard surveillance camera (dashcam) (Figure 2) was also 

installed on the front windshield to provide real-time geopositioning information (location 

and speed). This enabled traffic density and type to be recorded and categorized post hoc, 

and pollutant data to be matched with precise vehicle location and surrounding traffic. Other 

relevant events were also either captured visually – such as times the vehicle was following a 

bus or truck, or communicated verbally via the driver, such as vehicles travelling to the left 

of the measurement vehicle (close to the outdoor inlet), or smells - cigarette smoke, or food 

from restaurants. Meteorological data (temperature, wind speed, relative humidity, dew point 

and wind direction), and ambient pollutant data (NOx, PM2.5, CO) are known to influence 

urban particulate concentrations (Hitchins et al., 2000; Charron e Harrison, 2003; Janhäll et 
al., 2004; Zhang e Wexler, 2004; Kuhn et al., 2005; Longley et al., 2005; Westerdahl et al., 
2005; Hussein et al., 2006; Leavey, 2009) and were collected post-hoc from nearby fixed site 

monitors (FSM), operated by NOAA’s National Climate Data Center (NCDC) and the US 

Environmental Protection Agency (USEPA), respectively (Ncdc, 2015; Usepa, 2015) to be 

used in subsequent regression analysis. A complete list of the explanatory variables collected 

in this study is provided in the Supporting Information (Table S1). Given that one inlet was 

outside without shelter, no measurements were collected when it was raining.

2.3 Instruments

All instruments were light-weight, portable, and battery-powered with fast response times so 

that changes in pollutant concentrations could be easily captured. A P-TRAK Ultrafine 

Particle Counter 8525 (TSI, Inc.) measured particle numbers. It uses isopropyl alcohol to 

grow the particle, and condensation particle counter (CPC) technology to count particles in 

the size range 0.02 to 1 μm for concentrations up to 5×105 #/cc. A DustTrak II Aerosol 

Monitor 8532 (TSI Inc.) measured particle mass (PM2.5) concentrations up to 150 mg/m3 

using the principles of light-scattering. Lung-deposited surface area (SA) was measured 

using an AeroTrak 9000 Nanoparticle Aerosol Monitor (TSI Inc.), reporting the fraction of 

SA of particles in the size range 0.01 to 1 μm2/cm3 that would deposit in different regions of 

the respiratory tract according to the IARC. A more complete description is provided in 

Leavey et al., (2013). For this study, the fraction of particles depositing in the alveolar (A) 

region was collected. A Portable Aerosol Mobility Spectrometer (PAMS) (Kanomax, Japan, 

Inc.) was used to measure particle number size distributions (PNSD) in the size range 0.014 

to 0.863 μm. PAMS uses a bipolar charger to charge particles which can then be classified 

using a differential mobility analyzer (DMA) (Qi e Kulkarni, 2016), and a CPC to count 

these classified particles (Kulkarni et al., 2016). Finally, a Lascar EL-USB-CO300 sensor 

(Lascar Electronics) was used to measure CO with one reading every 10 seconds for 

concentrations between 0–300 ppm. All instrument and laptop timestamps were 

synchronized to the dashcam time prior to each measurement, to ensure that location and 

pollutant data were matched. Zero calibration and maintenance protocols were followed 

between samples. All instruments had been recently calibrated by the manufacturer. In 

addition, they were collocated and calibrated in the laboratory before and after the 
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measurement study, using sodium chloride generated from a nebulizer. Only minimal 

correction factors (<5%) were applied to the older Ptrak, AeroTrak, and DustTrak to 

facilitate comparisons.

2.4 Data analysis

All instrument data were imported into TrakPro software (version 4.6.1.0, TSI Inc.) and 

subsequently exported into Excel 2013, where they were checked manually and cleaned. 

Although a total of 56 commutes were made, one was abandoned due to rain. Another 4 

commutes only collected particle number concentrations (P-TRAK) and particle number 

size distributions (PAMS). Instrument malfunctions caused some data losses. The final 

dataset was comprised of between 47–51 samples for every instrument. A matrix was 

generated and imported into R version 3.2.5 (2016-04-14) Copyright © 2016 The R 

Foundation for Statistical Computing), for statistical analysis. The following R packages 

were also used: lme4 (Bates et al., 2015), car (Fox e Weisberg, 2011), ggplot2 (Wickham, 

2009), nortest (Gross e Ligges, 2015), matrix (Bates e Maechler, 2016), sjmisc (Lüdecke, 

2016a), and sjPlot (Lüdecke, 2016b). All graphics were generated in SigmaPlot 11.0.0.75 

Copyright © 2008 Systat Software, Inc.

Many statistical tests require data be normally distributed. All continuous variables were 

tested for normality using a range of graphical analysis tools (histograms, boxplots, stem 

plots, qq-plots), combined with formal hypothesis tests (Shapiro-Wilk and Anderson-

Darling). Those that did not satisfy these tests of normality were log-transformed and 

retested. All dependent variables were positively skewed and were log-transformed, thus 

ensuring normality. Analyses were conducted on data for the whole car journey. Because the 

CO data contained many zero data points they were problematic to transform, and so the 

total area under the curve was selected as the dependent variables’ statistical metric to 

examine both cabin and outdoor concentrations for all pollutants, log-transformed to ensure 

normality (Osborne e Waters, 2002), with the exception of PNSD where GMD was used.

Regression analysis was the primary method of statistical testing used in this study to 

ascertain the factors influencing measured outdoor and cabin pollutant concentrations. 

However, samples collected on either the same or consecutive days may have more in 

common with each other than with other days. This may have an “unpredictable” and 

“random” influence on the data (Winter, 2013). Therefore linear mixed-effects models 

(LME), which are extensions of linear regression models and fit by maximum likelihood, 

were built for each dependent pollutant variable, with instruction from several tutorials 

(Winter, 2013; Iqss, 2016; Lüdecke, 2016b). The fixed-effect was one independent variable, 

and the random-effect (intercept) was day (i.e. the day of data collection). For multiple 

predictors, each model started with the random intercept variable day, while the fixed-effects 

were left empty (null model). Next, one new explanatory fixed-effects variable was added to 

the model (newer model), and the output was then compared to the previous (reduced) 

model using the Likelihood Ratio Test approach (Winter, 2013). If the likelihood of the 

newer model was significantly different from the reduced model (p=<0.05), then the effects 

of this additional explanatory variable were significant and retained as a fixed-effect. This 

methodology was repeated until the model could no longer be improved. All models for the 
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outdoor pollutants included the journey duration variable, which was used to control for the 

different commute times.

3 Results and Discussion

3.1 Descriptive statistics

The final dataset was comprised of 55 commutes: 20 for Car 1 and 35 for Car 2. Twenty-one 

of these commutes were in the morning, and the remaining 34 were in the afternoon. 

Average temperature over the course of the field campaign was 66.9 °F (SD 12.0), while 

wind speeds ranged from 1.5 to 20.7 m/s; no particular wind direction dominated. 

Background nitrogen oxide (NOx) concentrations, a good indicator of general air quality in 

urban areas, also fluctuated between 2.5–58 ppb. Descriptive statistics were calculated for all 

pollutant metrics for the entire journey, and results are presented in Tables S2 and S3 of the 

Supporting Information. In addition, a matrix of both Pearson’s product-moment correlation 

(r) and Spearman’s Rank correlation (rs) (for non-parametric data) is also presented (Tables 

S4 and S5). However, it is worth highlighting here that the average geometric mean diameter 

(GMD) of measured outdoor PNSD was 34 nm (minimum 23 nm, maximum 52 nm). 

Similar, though frequently lower GMDs, are reported in the literature, and tend to be 

affected by road incline/decline, vehicle speeds, meteorology, distance from source, and 

sulfur content of the fuel (Palmgren et al., 2003; Kittelson et al., 2004; Zhang e Wexler, 

2004; Dahl et al., 2006; Cheng et al., 2010; Yamada et al., 2016). The relatively high lower 

cut-off of the instrument (14 nm) might explain the higher GMD reported here. The 

following sections will seek to identify the most important parameters effecting a) outdoor 

and b) cabin pollutant concentrations during a commute. The influence of window position / 

ventilation scenarios (windows open, windows closed, fan on, AC on) on the outdoor / cabin 

correlations will also be examined using time-series, and regression analyses with linear 

mixed-effects models.

3.2 Outdoor pollutant concentrations

The pollutant concentrations present directly outside of a vehicle during a commute are a 

combination of ambient pollutant concentrations and pollutant concentrations from nearby 

sources such as traffic and self-pollution, both of which are modified by meteorological, 

geological and topographical conditions. The fixed-effects terms for each LME model was 

one of the selected independent variables (i.e. NOx, wind speed etc. Table S1), controlled for 

journey duration. The random-effects term was the measurement day.

Table 1 presents the results of simple regression analysis for all variables demonstrating a 

significant association with measured outdoor pollutant concentrations (log area under the 

curve) at the 90th, 95th, or 99th % confidence interval (CI). For PNSD, the GMD was the 

dependent variable. In general, the pollutant data collected from a nearby fixed-site monitor, 

and representing ambient pollutant conditions log(NOx, PM2.5 and CO) demonstrated the 

highest positive correlations with outdoor commuting concentrations. Ambient log(NOx) 

proved the strongest predictor of particle number concentrations (#/cc) with an adj-R2 of 

0.36, which is not surprising given they share a common principal source in urban areas: 

vehicular emissions (Aqeg, 2005). Perhaps again unsurprisingly, ambient log(PM2.5) was the 
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best ambient pollutant metric to represent commuting PM2.5 (μg/m3), explaining about 33% 

of the variance. Lung-deposited SA (μm2/m3) was explained to some degree by all 3 

ambient metrics (with adj-R2 values of between 0.24 – 0.31), again highlighting traffic as a 

major source; while CO (ppm) correlated only with ambient log(PM2.5). While a major 

source of CO and NOx in urban areas are engine emissions from automobiles, PM2.5 is 

derived from both engine and non-engine sources if measured close to traffic (Palmgren et 
al., 2003; Thorpe e Harrison, 2008), but also from crustal matter, dust, and long-range 

transport as well (Querol et al., 2001; Hueglin et al., 2005). No correlation between the 

ambient pollutants and GMD was observed. These findings highlight that ambient pollutants 

may not represent local pollutant metrics equally, thus they should be selected carefully 

depending on which pollutant metric is of most concern.

The majority of meteorological variables also proved to be significantly correlated with 

outdoor commuting particulate pollutants, for example increasing wind speed was associated 

with a decrease in particle numbers, lung-deposited SA, and to a certain extent particle size 

(GMD) (adj-R2 = 0.25, 0.28, and 0.05 respectively). This is likely due to increased dilution 

and mixing with the cleaner background air (Shi et al., 1999; Hitchins et al., 2000; Zhu and 

Hinds, 2005), as well as increased transport and deposition rates (Zhang and Wexler, 2004). 

According to Pirjola et al (2006), the correlation between particles and wind speed is 

especially strong within 10 m of a roadside, primarily for particles below 100 nm, while 

Charron & Harrison (2003) only reported correlations for particles 30–450 nm in size. 

Ambient temperature demonstrated a negative association with particle numbers – with 

higher particle concentrations at lower temperatures (adj-R2 0.18). Temperature also 

correlated, this time positively, with PNSD, so that for every 1 unit increase in temperature 

there was a 0.31 nm increase in GMD (adj-R2 of 0.18; p-value 0.02). These trends may be 

explained in part by: 1) increased coagulation and diffusion in warmer temperatures in part 

from the increased vertical mixing of air masses (Shi et al., 1999; Hussein et al., 2006), 

causing a shift to larger particles and thus fewer numbers; 2) decreased secondary particle 

formation from the condensation of precursor gases (Wehner et al., 2002), and 3) a reduction 

in the rate of condensation growth of fresh particles (Yao et al., 2007). A positive correlation 

was also observed for PM2.5, which has been associated in previous studies with increased 

sulfate formation in warmer temperatures from SO2 oxidation (Ito et al., 2007; Tai et al., 
2010), and atmospheric stagnation (Tai et al., 2010), and in a more localized setting 

decreased brake-pad efficiency and increased dust generation (Grigoratos e Martini, 2014). 

Different wind direction patterns in warmer temperatures have also been reported (Ito et al., 
2007); indeed in this study easterlies dominated during warmer temperatures, and higher 

PM2.5 concentrations were measured during these easterlies (Table 1). It is important to add 

that driving behavior, traffic-type, and surface-to-tire interactions may also differ during 

warmer temperatures.

The time spent (seconds) travelling behind a bus (TimeBB, Table 1) was positively 

associated with PM2.5, lung-deposited SA, and CO. This is not surprising as old diesel buses 

are considered gross-polluters, and many studies have linked them with elevated on-road 

pollutant concentrations (Dennekamp et al., 2002; Weijers et al., 2004; Kaur et al., 2007; 

Briggs et al., 2008). However, the associations between the explanatory traffic variables - 

traffic density (0,1,2), presence of buses / trucks (0,1), direction (0,1) and the measured 
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outdoor pollutants were generally weak, and may come down to classification issues, for 

example: 1) It was difficult to reduce an entire commute into a single traffic-density class, 

because the commutes were comprised of many roads with different traffic densities. 2) 

Commuting traffic was often unidirectional and many of the commutes were counter-traffic 

congestion. For instance, the drive home from work was often moderate traffic but the 

freeway on the other side of the road was completely jammed. Therefore allocating a 

moderate classification to the commute may neglect the potential influence of counter 

traffic. 3) Wind variables, especially wind direction, may influence the degree that the other 

side of the road is influencing the road commuted. 4) Siegmann et al., (2008) discusses 

“superpolluters” – attributing much of the pollution emitted locally to a small percentage of 

poorly maintained vehicles. Therefore, a relevant traffic variable may focus less on traffic 

density, and more on the type of surrounding traffic, traffic mix, or its upkeep. As such, a car 

commuter’s exposure may be influenced more by the type of traffic in the immediate 

surroundings than the density of traffic and route selection. Of course, the chance of 

interacting with a superpolluter is increased with a higher traffic density, and no examination 

of the effects of idling and acceleration with increasing traffic density was conducted. The 

traffic density variable was also compared to the ambient pollution variables log(NOx, 

PM2.5, and CO), which had correlated fairly well with measured outdoor pollutant 

concentrations. While ambient log(NOx) and log(CO) demonstrated some correlation with 

traffic density (R2 = 0.04 and 0.06, p-values = <0.07), when regressions were controlled for 

the time of day, then traffic was no longer important, thus reinforcing the points made 

previously. Although pollutant concentrations were generally higher during morning 

commutes compared to afternoon, once the regressions included the ambient pollutants, this 

variable was no longer significant. Finally, no statistical difference between the routes driven 

by the 2 cars were observed. When the linear mixed-effects models were generated using 

one ambient pollutant metric and one meteorological metric, the random variable day was 

able to explain 32%, 45%, 45%, 6%, and 19% of the random variability for particle 

numbers, lung-deposited SA, PM2.5, CO, and GMD, respectively (Iqss, 2016). In general, 

PM2.5 was the easiest pollutant metric to predict, and CO and GMD the most difficult.

3.3 In-cabin and outdoor time-series

The influence of window position and ventilation parameters on cabin / outdoor correlations 

was a key focus of this study. The following section compares two scenarios: a) windows 

open, and b) windows closed, for the different pollutant metrics, highlighting where the 

similarities and differences lie. The influence of window position as well as the fan and AC 

will also be examined during subsequent regression analysis.

Figures 3(a–h) presents multiple time-series of the 4 pollutant metrics depicting 

simultaneous outdoor and cabin concentrations for windows open and closed. All commutes 

began in a fairly quiet environment (university or residential parking lot / private drive) 

where lower concentrations are expected, before progressing through varying concentration 

fields (including freeways, street canyons, multiple traffic lights, and cross roads), before 

terminating again in a quiet environment. Outdoor concentrations are a combination of both 

local sources and ambient conditions (traffic, weather, topography, other sources), while 

cabin concentrations are typically the product of outdoor concentrations which have been 
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subsequently modified by the presence of the vehicle cabin and AER. Contamination due to 

self-pollution was minimal (see Supporting Information Section 4 for more information). In 

general, when windows were open cabin concentrations tracked outdoor concentrations, 

albeit with some reduced variability and slight time lags. This is especially true for particle 

number counts, and to a lesser extent CO. Particle numbers also demonstrated the highest 

outdoor variability of the particle metrics, highlighting the high spatiotemporal variability of 

UFP (<100 nm), the dominant size of particle numbers close to source (traffic). At times 

cabin concentrations even exceeded outdoor concentrations, while other times outdoor 

spikes failed to influence cabin concentrations at all, which is likely due to the short duration 

of the outside elevation.

In contrast, closed windows generally produced a smoothing effect on cabin concentrations, 

with pollutants demonstrating reduced variability, fewer in-cabin spikes, and more 

pronounced time-lags between outdoor-to-cabin elevations, so that as the vehicle passed 

through a high concentration environment the cabin concentrations slowly rose, but equally 

as the vehicle returned to a lower concentration environment the cabin concentrations 

remained elevated, taking a longer time to dilute/diffuse, see Figure 3g (CO). It should also 

be noted that cabin PM2.5 and lung-deposited SA profiles frequently differed from those of 

particle counts and CO, often exhibiting elevated cabin concentrations, at least for periods of 

time, which was exacerbated when windows were closed. This will be examined in more 

detail in further work. Figure 4(a–b) presents cabin and outdoor PNSD averaged across a 

single commute. Distributions were bimodal with outdoor mode diameters around 10–30 

and 90–110 nm (compared to a mean GMD for all runs around 34 nm), with slightly larger 

cabin GMDs when windows were closed. According to Zhu et al (2007), smaller GMDs 

occur when sampling roads with higher diesel emissions which in turn are modified to a 

greater extent by ambient temperature and relative humidity. However, no information on 

diesel versus gasoline emission ratios were collected in this study. Finally, Figure 4(c–j) 

displays 20, 60, 100, and 250nm particle counts, for windows opens and closed. Similar to 

previous observations, cabin particle size and concentration track outdoors most closely 

when windows are open, while larger cabin sizes and reduced variability are observed when 

windows are closed. The degree to which cabin concentrations are influenced by outdoor 

concentrations depends on the AER and the particle penetration factor which is dependent 

on particle size, with higher ratios generally reported for larger particles (Zhu et al., 2005); 

however more data is required before conclusions for this study can be drawn.

3.4 In-cabin pollutant concentrations

This section provides a more rigorous assessment of commuter exposure by examining cabin 

pollutant concentrations using LME. The dependent variables were the log-transformed 

measured cabin pollutant concentrations, the fixed-effect variables were the log-transformed 

outdoor measured concentrations, and the categorical ventilation variable: windows open 

(reference level), windows closed, fan on, AC on. The random intercept variable was day. 

Models were not controlled for journey duration because the outdoor pollutant variable was 

now included. Results demonstrated that cabin pollutants were predominantly influenced by 

the outdoor concentrations, which in this study were able to explain 64%, 28%, 92%, 28%, 

and 16% of cabin variability for particle numbers, lung-deposited SA, PM2.5, CO 
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concentrations, and GMD, respectively (p-values <0.01). Lung-deposited SA demonstrated 

lower cabin concentrations compared to outdoor (b = 0.5257, p-value <0.01) while the size 

of cabin particles tended to be slightly smaller than outside (b = 0.71, p-value = <0.01).

However, the vehicle’s ventilation scenario exerted a significant influence on cabin / outdoor 

correlations for all pollutants (Figure 6). For particle numbers, cabin concentrations tracked 

outdoor concentrations most closely when windows were open (reference level). 

Associations were significantly modified when the fan was running (b = −0.217), and even 

more so when the AC was running (b = −0.416), or the windows were closed (b = −0.563) 

(p-values <0.05). This ventilation variable explained 7% of the total cabin variation in 

particle numbers. In fact, running the AC or keeping the windows closed provided such a 

protective influence that cabin / outdoor correlations were no longer significantly correlated. 

A similar trend was also observed for lung-deposited SA. While the ambient variable 

temperature was not significant for outdoor lung-deposited SA concentrations, it was a 

strong predictor of cabin SA concentrations with higher concentrations measured in warmer 

temperatures (b = 0.04, p-value = <0.01). This may indicate some secondary organic aerosol 

(SOA) formation due to the correlation between ambient temperature and ambient ozone, 

and ambient ozone and SOA (Lamorena and Lee, 2008), although this was not observed for 

any other measured pollutant. Cabin PM2.5 concentrations tracked measured outdoor 

concentrations the most closely, and were the least influenced by any change in ventilation 

parameters (<1%). Cabin CO concentrations were lower than their outdoor counterparts (b = 

0.889, p-value <0.01), and modified the most when windows were closed, closely followed 

by running the AC. In fact, for 33% of journeys, no cabin CO was recorded, and 75% of 

these cases were observed when either the AC was running or windows were closed, again 

highlighting the protective effect of these ventilation parameters. Running the fan generated 

cabin concentrations that tracked outdoor concentrations the most closely (b = 0.875) but 

results were not statistically significant. Larger cabin particle sizes (GMD) were observed 

when windows were closed compared to open (b = 4.3, p-value <0.05), which may be 

explained by a lower penetration factor and higher deposition rates for particles <100 nm 

(Xu et al., 2010), and reduced dilution permitting increased time for coagulation (Cyrys et 
al., 2004). Finally, the effect of the car make was examined to establish whether the cabin / 

outdoor correlations and ventilation parameters were different between cars. None was 

observed for any of the pollutants. The final LME models presented in Figure 5a–d were 

able to predict 97%, 88%, 96% and 90% of the measured cabin concentrations for particle 

numbers, lung-deposited SA, PM2.5, and GMD, respectively. The LME model for CO was 

unstable and was not included in the final figure. All final models satisfied the normality 

requirements during residual diagnostics (residual plots, histograms, qq-plots). Satisfactory 

validation of these models was also completed (results not shown).

When either the fan or AC were operating, air was not being recirculated in the vehicle 

cabin. However, the AC consistently resulted in lower cabin concentrations compared to the 

fan. The process of thermophoretic deposition is proposed as a possible explanation. When 

air enters the vehicle duct, it passes through the filter and then a fan which accelerates the 

air. Next, it passes through an evaporator which, when the AC is operating, cools the air 

depending on the temperature setting, the amount of Freon in the system, and ambient 

temperature and humidity, before entering the vehicle cabin via the vents. When the fan is 

Leavey et al. Page 11

Atmos Environ (1994). Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



operating, the outdoor air follows the same trajectory with the only exception being that the 

evaporator is no longer cooling the air. The increased temperature gradient that exists 

between ambient air and the evaporator surface when the AC is operating results in a higher 

thermophoretic velocity and subsequently a higher particle deposition rate, i.e. more 

particles are depositing in the duct and so fewer particles are entering the cabin. The same 

explanation may be used to explain the higher GMD observed when the AC was operating 

where again the increased temperature gradient causes a higher thermophoretic velocity and 

particle deposition rate especially for the smaller particles.

There are many factors that complicate cabin / outdoor pollutant correlations. 1) The 

location of a source (in front of / adjacent to car) may impact the cabin and outdoor inlets 

differently, as will the lane the measurement vehicle is in (its traffic density, proximity to 

other lanes, proximity to moving traffic). 2) Vehicle speed will affect the generation of tail-

pipe and non-engine emissions (resuspension from mechanical turbulence) (Kittelson et al., 
2004; Dahl et al., 2006), the infiltration of particulates to the cabin by altering the AER of 

the vehicle (Xu et al., 2010; Hudda et al., 2011; Knibbs et al., 2011; Ding et al., 2016), and 

how long a vehicle spends in a given location (see point 4 below). Because speed is 

dynamic, it was too difficult to capture for the whole commute; however, its importance will 

be examined in future work. 3) Wind speed and direction will affect how emissions are 

diluted, and whether they are channeled towards or away from the measurement vehicle; it 

may also influence the penetration of these emissions into the vehicle. 4) Time-scale: the 

longer a vehicle is exposed to high outdoor concentrations the more they may penetrate the 

vehicle cavity. This can be observed in the time-series in Figure 3. If a vehicle passes only 

briefly through a polluted environment, its cabin may offer protection from the pollutants; 

conversely if it spends a prolonged time in elevated concentrations, the cabin may trap 

pollutants inside of the vehicle. This again is dependent on AER and ventilation parameters. 

5) Self-pollution from the engine, resuspension of dust inside the vehicle, and isopropyl 

emissions from the 4 particle number instruments may have also complicated the cabin and 

outdoor correlations (See Supporting Information). Some contribution from SOA is also 

likely, especially given the higher cabin concentrations sometimes observed at the start of 

the commute (which is not believed to be related to instrument emissions).

While there are smart cars currently on the market with HEPA filters installed to remove 

particulates including pollen and viruses, most vehicles are not equipped with such efficient 

removal devices. This study demonstrates that a driver may still be able to control their 

commuting exposure by being cognizant of their pollutant environment and applying 

dynamic behavior modification to adapt to changing scenarios. For example, when a driver 

enters a high pollutant environment they could turn on the AC to reduce intake of the dirty 

air; when they enter a clean environment they could open their windows thus flushing 

pollutants from the vehicle. Of course, knowing when the air is clean or dirty is not always 

intuitive. Although much research is currently being conducted on mapping street pollution 

using multiple distributed wireless sensors, or disseminating local air quality along with 

local weather using a mobile app, a driver’s ability to access information on the real-time air 

quality of a specific driving route is presently beyond the grasp of most commuters. What is 

more, this data will not provide information on what is actually occurring inside of a vehicle. 

Perhaps in the future cars may be equipped with pollutant sensors that can measure the 
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outdoor air and automatically apply mechanisms to prevent its infiltration indoors. Until that 

technology is available, further examination of the data collected during this campaign will 

be performed with the aim of examining the different roadway microenvironments, and 

providing some interim solutions to reduce commuter exposure.

4. Conclusion

The objective of this study was to collect simultaneous real-time particulate and CO 

measurements outside and inside of an on-road car, to identify the parameters effecting both 

outdoor concentrations and outdoor and cabin associations, and to examine when commuters 

receive their highest exposures and how this may be mitigated. Four ventilation parameters 

were investigated: windows open, windows closed, fan on, AC on, and rigorous analysis was 

performed using linear regression and mixed-effects models. The final dataset was 

comprised of 55 commutes. Ambient NOx and PM2.5 were important predictors of pollutant 

concentrations outside of a moving vehicle, explaining 18–36% of variability, while the 

meteorological variables (for example wind speed and temperature) explained between 5–

44%. Of the traffic variables, only the time spent travelling behind a bus was significantly 

significant for PM2.5, lung-deposited SA, and CO. The lack of significance for the other 

traffic variables is likely due to coding difficulties and this will be examined in further work. 

Time-series analysis demonstrated that cabin concentrations tended to track measured 

outdoor concentrations albeit with some reduced variability and time-lags when windows 

were open. When windows were closed, a smoothing effect occurred so that whether a 

pollutant entered the cabin was in part due to the outside pollutant concentration and the 

time spent in that elevated concentration. In general, pollutants took longer to enter the 

vehicle, but also longer to exit it. The vehicle cabin may therefore be viewed as acting both 

as a buffer - reducing the penetration of pollutants into the vehicle, and as a sink – capturing 

pollutants and slowing dispersion. In-cabin pollutants were predominantly influenced by the 

measured outdoor concentrations, which were able to explain 64%, 28%, 92%, 28%, and 

16% of cabin variability for particle numbers, lung-deposited SA, PM2.5, CO concentrations, 

and GMD, respectively (p-values <0.01). The vehicle’s ventilation parameters, which effect 

the AER and thus particle penetration or removal, were also important. Cabin pollutant 

concentrations tracked outdoor concentrations most closely when windows were open or the 

fan was running. Commuting with the windows closed or the AC on reduced cabin 

concentrations significantly enough to disrupt cabin / outdoor correlations for the majority of 

measured pollutants, and frequently prevented the diffusion of CO into the vehicle. Running 

the AC also significantly increased the mean size of particle numbers measured inside the 

vehicle. Particle number concentrations were the most effected by changing ventilation 

scenarios, with PM2.5 largely immune to such changes. In general however, car drivers can 

expect their highest exposures when driving with windows open or the fan on, and their 

lowest with windows closed or the AC running. A driver may be able to control their 

commuting exposures by being cognizant of their pollutant environment and applying 

dynamic behavior modification to adapt to changing scenarios. A more detailed examination 

of these changing pollutant scenarios in different roadway microenvironments will be 

conducted in follow-up work in an attempt to further identify important parameters 

influencing a commuter’s exposure, from which mitigation strategies can be developed.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Map of route travelled during measurement campaign
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Figure 2. 
Schematic of the experimental setup.
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Figure 3(a–h). 
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Time-series depicting simultaneous in-car / outdoor concentrations during windows open 

and windows closed for (a–b) particle number counts, (c–d) lung-deposited SA, (e–f) PM2.5, 

and (g–h) CO. The shaded rectangle is the time spent on the freeway
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Figure 4(a–j). 
Simultaneous in-car / outdoor concentrations during windows open and closed for (a–b) 

PNSD, (c–d) 20 nm, (e–f) 60 nm, and (g–h) 100 nm, (i–j) 250 nm.
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Figure 5(a–d). 
Sensitivity models comparing measured and predicted in-car data from LME analysis for: a) 

particle number concentration, b) lung-deposited SA (A), c) PM2.5, and d) GMD.

* = statistically significant at the 95th CI; ** = statistically significant at the 99th CI; all 

dependent variables, with the exception of GMD, were log-transformed, hence all 

coefficients are for the log of the data; b = estimates of regression coefficients; SE = 

standard error; Var = variance; SD = standard deviation. Windows open is the reference level 

for the categorical ventilation variable. 1The intercept for the mean of the explanatory 

variables which is also the mean of all random intercepts.
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